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Emerging Applications of Metabolomics in 
Clinical Pharmacology
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Metabolic disturbances have been associated with many human diseases, including cancer, diabetes, and 
cardiovascular disease. Metabolomics, a rapidly growing member of the –omics family, investigates cellular 
metabolism by quantifying metabolites on a large scale and provides a link between metabolic pathways and the 
upstream genome that governs them. With the advances in analytical technologies, metabolomics is becoming a 
powerful tool for identifying diagnostic biomarkers of diseases, elucidating the pathological mechanisms, discovering 
novel drug targets, predicting drug responses, interpreting the mechanisms of drug action, as well as enabling 
precision treatment of patients. In this review, we highlight the recent advances of technologies and methodologies 
in metabolomics and their applications to the field of clinical pharmacology. Recent publications from 2013 to 2018 
are covered in the review, and current challenges and potential future directions in the field are also discussed.

Metabolism is the foundation of cell physiology involving bio-
mass, energy, and redox balance, all of which are vital for life. 
Many studies have shown that metabolic reprogramming plays 
a critical role in various diseases including cancer, diabetes, and 
cardiovascular and neuropsychiatric diseases. Thus, the study of 
metabolism is essential for providing insights into the diseased 
physiology as well as novel therapeutic strategies.

Metabolomics is a relatively new member of the –omics family 
and an increasingly powerful tool for understanding cellular and sys-
temic metabolism. It is generally defined as the qualitative and quan-
titative analysis of small-molecule metabolites (<1,000 Da) involved 
in various biochemical reactions in biological systems.1,2 It aims to 
characterize the ultimate status of physiology or pathophysiology 
by measuring the time-dependent metabolite alterations in a global 
metabolic network.2–4 It can profile a large amount of the small-mol-
ecule metabolites in a variety of biological samples including serum, 
plasma, urine, cerebrospinal fluid, cells, and tissues.5,6 The advent of 
the metabolomics approach allows researchers to identify metab-
olites of interest and novel markers and pathways associated with 
pathophysiology at unprecedentedly low concentration levels, and as 
a result, the field of metabolism is rekindled after several decades.4,7 
To date, metabolomics has been widely used in basic and transla-
tional research areas including biomarker discovery, disease mecha-
nistic study, nutrition, drug development, and pharmacology.8–10

It is well established that individuals respond differently to drug 
treatment, owing to both genetic and environmental influences, 
such as xenobiotics, gut microbiota, and drug–drug interactions. 
Individual variability in drug response may lead to treatment failure 
arising from severe toxicity and/or lack of efficacy, necessitating pa-
tient stratification for personalized treatment in clinical trials and 
bedside treatment. The application of –omics technologies such as 
genomics11 and metabolomics5 makes it possible to maximize ther-
apeutic drug effects and/or minimize toxicity. Pharmacogenomics 

reflects the inherited difference among patients of various genotypes 
and shows great promise for the development of individualized 
drug therapy.11 However, it has not considered the environmen-
tal factors, such as age, gender, lifestyle, and the gut microbiome, 
and thus has achieved limited success in clinical applications.12 
Pharmacometabolomics, on the other hand, reflects the comprehen-
sive effects of genetic, environmental, and physiological impacts and 
can therefore be used as a powerful complementary tool in clinical 
pharmacology and personalized therapy.5 The past decade has wit-
nessed the increasing applications of metabolomics in clinical phar-
macology.5,13–15 In this review, we summarize the recent advances in 
the methodologies of metabolomics and then highlight the applica-
tions of metabolomics in clinical pharmacology over the past 5 years.

METABOLOMICS ANALYTICAL TECHNOLOGIES
Metabolomics can be categorized into “untargeted” and “tar-
geted” approaches. Untargeted metabolomics mainly provides 
global profiles of a large number of metabolites in biological sam-
ples and contains much information on known and unknown 
metabolites.2,16 Targeted metabolomics usually focuses on the 
analysis of a specific subset of known metabolites, such as tricar-
boxylic acid cycle intermediates or amino acids.17,18 The metabo-
lomic workflow for both targeted and untargeted metabolomics 
analysis usually comprises the sequential steps of experimental 
design, sample collection and preparation, data acquisition, data 
analysis, metabolite identification (for untargeted metabolomics), 
and biological interpretation (Figure 1).19,20 Many reviews have 
previously summarized the advances in metabolomics technolo-
gies, including sample collection21 and preparation22,23 and data 
acquisition2,5 and analysis.24 Herein, we aim to brief the key de-
velopment of the mass spectrometry (MS)-based metabolomics 
technologies that were frequently used in clinical pharmacology 
studies in the past 5 years.
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Mass spectrometry and nuclear magnetic resonance (NMR) are 
the most popular platforms for data acquisition in metabolomics 
and metabolic flux studies. The advantages and disadvantages of 
MS and NMR have been reviewed previously.2,5 Although NMR is 
more quantitative and can provide more information about molec-
ular structure, its application has been limited by its relatively lower 
sensitivity and throughput than MS.25 In addition, MS can be cou-
pled with chromatographic separation technologies, including liquid 
chromatography (LC), gas chromatography (GC), and capillary elec-
trophoresis, thereby allowing improved separation, quantification, 
and characterization of analytes from complex biological samples.2 
Among these, high sensitivity, ease of sample preparation, high res-
olution power, and reproducible chromatographic retention times 
make LC-MS the most widely used platform in metabolomics.

The choice of MS instruments usually depends on the type 
of metabolomics. Triple quadrupole or quadrupole linear ion 
trap mass analyzers are usually used in targeted metabolom-
ics studies because of their high sensitivity and selectivity.25 

Based on an LC-based triple quadrupole mass spectrometer, Gu 
et al.26 detected 595 precursor ions and 1,890 multiple reaction 
monitoring (MRM) transitions under positive and negative ion 
modes. Hu et  al. developed a targeted metabolomics method 
monitoring ~200 metabolites using a triple quadrupole mass 
spectrometer coupled to a high-performance liquid chromato-
graph. This method has been widely adopted for mechanistic 
studies of cancer and infectious diseases targeting cell metab-
olism.27–30 In particular, the method is ultrasensitive and can 
detect ~60 metabolites from only 10,000 hematopoietic stem 
cells, which enables metabolomics profiling of rare cell popu-
lations.28 Recent studies have also utilized high resolution MS 
instruments such as Orbitrap and time-of-flight (TOF) for 
targeted metabolite quantification.31 For example, by using a 
quadrupole-Orbitrap LC-MS (Q-Exactive, Thermo Scientific, 
Bremen, Germany), Zhou et al.32 developed an efficient large-
scale quantitative method targeting 237 metabolites by using 
the scheduled parallel reaction monitoring mode. In untargeted 

Figure 1  A typical workflow for metabolomics study usually comprises experimental design, sample collection, data acquisition, data 
processing and statistical analysis, metabolite identification, and biological validation. NIST, National Institute of Standards and Technology. 
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metabolomics, high resolution MS instruments such as quad-
rupole TOF and Orbitrap mass analyzers are extensively used 
because of their high mass resolution, high mass accuracy, and 
high scan speed. The obtained high-resolution spectral data 
facilitates a rapid library search for metabolite identification. 
Raro et al.33 evaluated the performances of hybird quadrupole 
TOF (Waters Micromass, Manchester, UK) and hybrid quad-
rupole Orbitrap (Thermo Scientific, Bremen, Germany) for 
untargeted metabolomics and concluded that both instruments 
were equally efficient for metabolic profiling studies. Recently, 
a new strategy of combining untargeted and targeted metabolo-
mics has been proposed. Xu and colleagues developed compre-
hensive pseudotargeted methods on Triple TOF (AB SCIEX, 
Framingham, MA), as a practical approach with high repeat-
ability and throughput, that is able to generate high-quality and 
information-rich metabolomics data.34,35 Using a systematic 
and automated approach and software (MRM-Ion Pair Finder, 
Guowang Xu lab, Dalian, China), they were able to define 854 
MRM metabolite ion pairs in serum samples. This method gen-
erated data sets that are close to those from a targeted metabolo-
mics approach with improved metabolite coverage and reliable 
biomarkers identification.

(Q-Exactive, Thermo Scientific) Additionally, new metabolomics 
technologies are emerging, such as matrix-assisted laser desorption/
ionization mass spectrometry,36 desorption electrospray ionization 
mass spectrometry,37 and iKnife  (Waters).38 Moreover, the com-
bination of two or more above-mentioned platforms can achieve 
a broader coverage of different types of metabolites from complex 
biological samples.39,40

APPLICATIONS OF METABOLOMICS IN CLINICAL 
PHARMACOLOGY
Pharmacogenomics focuses on the identification of genome 
variants that influence drug response, while metabolomics in-
vestigates the biochemical variations associated with varied drug 
responses and disease heterogeneity. As a pathophysiological state 
often involves metabolic perturbation, metabolomics is increas-
ingly recognized as a powerful tool for its ability to profile and 
delineate metabolic perturbations and, thus, linking metabolic 
phenotypes to genotypic variations. Clinical applications of me-
tabolomics involve identification of diagnostic biomarkers, eluci-
dation of the disease mechanisms, discovery of novel drug targets, 
and prediction of the drug responses (Table 1). Patients often 
show great heterogeneity at the molecular level due to their diverse 
genotypes, gut microbiota, nutrition status, and lifestyles. All 
these factors contribute to interindividual variability in drug re-
sponse and treatment outcome. Therefore, it is vital to investigate 
these differences from a systematic perspective using multiplex an-
alytical and computational/data mining tools (e.g., genomics and 
metabolomics).

Discovery of metabolite-based diagnostic and prognostic 
biomarkers
Diagnostic and prognostic biomarkers of disease could play an 
essential role in personalized treatment and precision medicine. 
Metabolic phenotyping provides a new dimension of patient 

information that will enable a patient stratification based on their 
metabolic profiles. The applications of MS in biomarker discovery 
have been reviewed previously.41–43 There have been numerous 
examples of metabolomics applications to identifying biomarkers 
in various cancers, including gastric cancer,44 bladder cancer,45 
epithelial ovarian cancer,46 cancer cachexia,47 and colorectal can-
cer (CRC).48 Mutations in isocitrate dehydrogenase (IDH)1 and 
IDH2, present in most gliomas in adults, are associated with the 
accumulation of 2-hydroxyglutarate (2-HG) in the tumor. Choi 
et al.49 developed and optimized a noninvasive detection method 
of 2-HG by proton magnetic resonance spectroscopy and then esti-
mated 2-HG levels in the tumors of 30 subjects. The results showed 
that 2-HG levels were correlated with mutations in IDH1 or IDH2, 
indicating that the noninvasive detection of 2-HG might be feasi-
ble. With the US Food and Drug Administration (FDA) approval 
of inhibitors for mutant IDH1 and IDH2 for acute myeloid leuke-
mia (AML), this marker could serve as a complementary diagnostic 
biomarker. Xu and his colleagues50 performed a biomarker study on 
hepatocellular carcinoma (HCC). They analyzed serum metabolic 
profiles from 1,448 subjects, including healthy controls and patients 
with chronic hepatitis B virus infection, liver cirrhosis, and HCC, 
using LC-MS-based metabolomics methods. The data revealed a 
serum metabolite biomarker panel including phenylalanyl-tryp-
tophan and glycocholate. This panel performed better than  
alpha-fetoprotein for diagnosis and provided a new method in 
early detection and differentiating HCC from a high-risk popu-
lation of cirrhosis. In a recent metabolomics study, Jia et al.48 were 
able to isolate a panel of 15 metabolites that discriminated be-
tween CRC tissue and normal tissue adjacent to the tumor. The 
metabolites were identified as follows: elevated (relative to normal 
tissue) lactate, glycerol, and glutamate, which are associated with 
metabolic pathways for energy production due to the Warburg ef-
fect; elevated β-alanine, aspartate, palmitoleate, kynurenine, and 
uracil, which are associated with pathways leading to synthesis 
of macromolecules; elevated putrescine, cysteine, hypoxanthine, 
5-oxoproline, 2-aminobutyrate, and downregulated myo-inositol, 
which are associated with pathways that promote adaptation to 
oxidative stress. This panel was hypothesized to represent a core 
metabolome capable of identifying CRC for patients that had var-
ied genetic backgrounds, mutations, pathologic stages, and geo-
graphic locations as four different CRC cohorts originating from 
Hangzhou, Shanghai, Beijing, and the United States were tested. 
In addition, this panel of metabolites was shown to distinguish the 
treatment outcomes of CRC patients with better outcomes with a 
longer time-to-recurrence (52.9 vs. 25.9 months) and better 5-year 
survival rate. The conclusion from this work was that there was a 
possibility for a distinct metabolic signature of human CRC with 
prognostic potential.

Metabolic biomarkers were also used to differentiate pancreatic 
ductal adenocarcinoma from chronic pancreatitis.51 In a case-con-
trol metabolomics study performed using both GC-MS and LC-
MS, a biomarker signature comprised of nine metabolites and 
additionally carbohydrate antigen 19-9 was identified to differen-
tiate pancreatic ductal adenocarcinoma from chronic pancreatitis 
with a sensitivity of 89.9% and a specificity of 91.3%, respectively. 
The clinical application of this biomarker panel improved the 
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Table 1  Emerging applications of metabolomics in clinical pharmacology

Application Disease Sample
Metabolomic 

platform Major findings Reference

Discovery of diagnos-
tic and prognostic 
biomarkers

Gastric cancer Human 
plasma

LC-MS Tryptophan, kynurenine, and phenylacetylglutamine 
might serve as potential biomarkers for diagnosis of 

gastric cancer.

44

Bladder cancer Human urine LC-MS Ten metabolites showed the potential to be 
biomarkers for the diagnosis of bladder cancer.

45

Epithelial 
ovarian cancer 

(EOC)

Human 
plasma

LC-MS Three groups of metabolites were identified as 
potential diagnostic biomarkers for different stages 

of EOC.

46

Cancer 
cachexia

Human 
serum and 

urine

NMR 45 metabolites were found to be cancer 
cachexiarelated in serum and urine.

47

Colorectal 
cancer

Human 
tumors

GC-MS Fifteen metabolites were used to predict the 
recurrence and survival of colorectal cancer 

patients.

48

Acute my-
eloid leukemia 
(AML); glioma

Human 
tumors, 

serum, urine, 
and marrow

NMR; LC-
MS; GC-MS

2-Hydroxyglutarate might be a valuable diagnostic 
and prognostic biomarker of AML and gliomas.

49,68–71

Hepatocellular 
carcinoma 

(HCC)

Human 
serum

LC-MS Phenylalanyl-tryptophan and glycocholate in serum 
had the potential for diagnosis of HCC.

50

Pancreatic 
ductal ad-

enocarcinoma 
(PDAC); chronic 

pancreatitis 
(CP)

Human 
serum and 

plasma

GC-MS; 
LC-MS/MS

Nine metabolites coupled with carbohydrate antigen 
19-9 were identified for the differential diagnosis 

between PDAC and CP.

51

Alzheimer's 
disease (AD)

Human 
serum and 
brain tissue

FIA-MS/MS; 
LC-MS/MS

Sphingolipids were associated with AD pathology 
and progression, which could serve as biomarkers 

for AD diagnosis.

52

Cardiovascular 
disease

Human 
serum

NMR; LC-
MS; GC-MS

Phenylalanine, monounsaturated fatty acids, 
and polyunsaturated fatty acids could predict 

cardiovascular risk.

53

Type 2 
diabetes and 
cardiovascu-
lar disease 

(e.g., coronary 
heart disease, 

myocardial 
infarction, and 
heart failure)

Human 
plasma

LC-MS/MS; 
GC-MS

Mannose might serve as a biomarker of type 2 
diabetes and cardiovascular disease.

54

Understanding mecha-
nisms of diseases

Bipolar 
disorder (BD)

Human 
cerebrospinal 

fluid

CE-MS IDH3A-mediated abnormal isocitrate metabolism in 
the mitochondria was involved in the pathogenesis 

of BD.

14

Prostate 
cancer

Human 
prostate 

specimens

LC-MS mTORC1 regulated polyamine metabolism through 
regulation of S-adenosylmethionine decarboxylase 

1 stability.

15

Pulmonary 
hypertension

Cells isolated 
from patients

LC-MS Relationship between microRNA-124–PTBP1–
PKM and overall metabolic, proliferative, and 
inflammatory state of hypertensive adventitial 

fibroblasts was clarified.

55

Acute myeloid 
leukemia (AML)

Human 
serum; 
mouse 

serum; cells

GC-MS AML was prone to SLC2A5-mediated fructose 
utilization to offset glucose insufficiency.

57

(Continues)
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Application Disease Sample
Metabolomic 

platform Major findings Reference

Non–small cell 
lung cancer 

(NSCLC)

Human 
plasma 

and tumor; 
mouse 

plasma and 
tumor; cells

GC-MS; 
NMR

Glucose metabolism was heterogeneous within 
and between human tumors; lactate was a fuel in 

human NSCLC.

58,59

Severe fever 
with throm-
bocytopenia 

syndrome virus 
(SFTSV)

Human 
serum

LC-MS/MS Arginine metabolism was involved in SFTSV 
infection.

30

Non-alcoholic 
fatty liver dis-
ease (NAFLD)

Human 
plasma

LC-MS/MS; 
GC-MS

GSH and NAD+ metabolism were potential 
intervention targets in NAFLD.

60

Zostavax 
vaccination

Human 
plasma

LC-MS Inositol phosphate, glycerophospholipids, and sterol 
metabolism affected immune outcome.

61

Identification of new 
drug targets

AML; gliomas Human 
gliomas; 

cells; human 
peripheral 

blood, bone 
marrow, and 

pheresis 
samples

LC-MS; 
GC-MS

2-hydroxyglutarate was found to be a biomarker of 
AML.

62,63

AML – – Enasidenib and ivosidenib, inhibitors of mutant 
enzymes IDH1 and IDH2, respectively, were 

developed and approved.

65–67

Gliomas Primary 
patient-
derived 

glioma cells; 
xenografts

LC-MS; NMR 2-HG produced by IDH1/2 mutations could enhance 
the sensitivity to PARP inhibitor in tumor cells.

72

AML Human 
plasma

GC-MS; 
LC-MS/MS

Drug resistance of mutant IDH1/2 inhibitors and 
relevant mechanisms were uncovered.

73,74

Pharmacometabolomics 
for predicting the drug 
efficacy

Resistant 
hypertension

Human urine NMR; 
LC-MS/MS

Citrate, oxaloacetate, α-ketoglutarate, and malate 
might predict future response to spironolactone 

before treatment.

80

Acute lympho-
blastic leukae-

mia (ALL)

Human whole 
blood

LC-MS A metabolite panel could be used to monitoring the 
disease progress of ALL.

81

Prostate can-
cer (PCa)

Human 
serum

LC-MS Seven metabolites might serve as predictive 
biomarkers for assessing the therapeutic response 

to endocrine therapy in PCa patients.

82

Breast cancer Human 
serum

LC-MS Spermidine and tryptophan were correlated to the 
response of patients who received trastuzumab-

paclitaxel neoadjuvant therapy.

83

Renal cell car-
cinoma (RCC); 

melanoma

Human 
serum

LC-MS Kynurenine level was associated with drug response 
to nivolumab in melanoma patients; higher baseline 
level of adenosine predicted worse progression-free 

survival and poor response to nivolumab in RCC 
patients.

84

– Human 
serum

LC-MS Serum oxylipids derived from linoleic acid were 
associated with the response to low dose aspirin.

85

Table 1  (Continued)

(Continues)
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diagnosis and treatment stratification when compared with carbo-
hydrate antigen 19-9 alone.

Recently, a quantitative and targeted metabolomics method 
revealed potential biomarkers for Alzheimer’s disease (AD) and 
cardiovascular diseases. Varma, et al.52 discriminated AD patients 
from healthy controls using a panel of 26 metabolites from sphin-
golipids and glycerophospholipids metabolism. Some sphingolip-
ids were associated with the pathology and progression of AD and 
were proposed to be biomarkers for early AD diagnosis. In an-
other biomarker discovery study involving 7,256 patients, quan-
titative NMR metabolomics identified 33 lipids and metabolites 
significantly associated with incident cardiovascular events.53 
With further meta-analyses, four metabolites were revealed to be 
highly associated with future cardiovascular events: higher serum 
phenylalanine and monounsaturated fatty acid levels were asso-
ciated with increased cardiovascular risk, while higher omega-6 
fatty acids and docosahexaenoic acid levels were associated with 
lower risk. Another study showed that plasma mannose levels 
were elevated in subjects with higher risk to develop type 2 diabe-
tes and cardiovascular disease.54

Understanding mechanisms of diseases
Improved understanding of disease mechanisms would facilitate 
new drug discovery and enable precision clinical pharmacology. 
Recently, metabolomics has demonstrated its usage in understand-
ing fundamental insights into molecular mechanisms of neuro-
psychiatric diseases, cardiovascular diseases, and cancer.14,15,55

Particularly, a complementary approach integrating both 
discovery metabolomics and metabolic flux analysis involving 

stable-isotope labeling was shown to provide significant biologi-
cal insights into cancer metabolism.56 Using both metabolomics 
and metabolic flux analysis, Jia et  al.57 reported that AML was 
prone to SLC2A5-mediated fructose utilization to offset glucose 
insufficiency. They also revealed that high expression of the fruc-
tose transporter, SLC2A5, was correlated with inferior survival of 
AML patients. Meanwhile, serum metabolomics study revealed 
that fructose utilization was negatively associated with the ther-
apeutic outcomes in AML patients. Pharmacological blockage 
of fructose uptake ameliorated leukemic phenotypes and poten-
tiated the cytotoxicity of the antileukemic agents. This study 
highlighted enhanced fructose utilization as a metabolic feature 
of AML and its potential as a therapeutic target. Deberardinis 
et al. used metabolic flux analysis to analyze the in vivo metabolic 
heterogeneity as well as lactate utilization in non–small cell lung 
cancer patients.58,59 Their data indicated that tumors, including 
bona fide human non–small cell lung cancer, can use lactate as a 
fuel in vivo. Strikingly, these in vivo metabolism studies also indi-
cated that when directly comparing lactate and glucose, lactate’s 
contribution to the tricarboxylic acid cycle predominates.

In a recent work by Hu and DeBerardinis et  al. on small cell 
lung cancer (SCLC),29 cell lines were profiled using metabolom-
ics, and two groups of metabolites were identified correlating with 
high or low expression of the Achaete-scute homolog-1 (ASCL1) 
transcription factor (ASCL1High and ASCL1Low). Metabolic flux 
analysis further proved that purine de novo synthesis pathway was 
upregulated in ASCL1Low cell lines and tumors, which abundantly 
express the guanosine biosynthetic enzymes inosine monophos-
phate dehydrogenase-1 and -2 (IMPDH1 and IMPDH2). An 

Application Disease Sample
Metabolomic 

platform Major findings Reference

Pharmacometabolomics 
for predicting the drug 
toxicity

– Human urine GC-MS A group of metabolites was found to help to 
understand the relationship between SLCO1B1 

SNPs and methotrexate toxicity.

89

Esophageal 
squamous 

cell carcinoma 
(ESCC)

Human 
serum

GC-MS; 
LC-MS

Glutaric acid, glucuronic acid, and cystine were 
correlated with hematological toxicity, pyruvic acid 

was correlated with nephrotoxicity after neoadjuvant 
chemoradiotherapy for ESCC.

90

Atopic 
dermatitis

Human urine LC-MS The long-term side effects of pimecrolimus and 
desonide were predicted by metabolomics.

91

Drug metabolism and 
pharmacokinetics

– Human 
plasma

GC-MS; 
LC-MS

A poly-PK strategy was developed that can 
simultaneously characterize the PK of Chinese 

herbal medicine as well as the endogenous 
metabolic response.

92

– Human 
plasma

GC-MS Predose metabolites were significantly correlated 
with the PK behavior of atorvastatin.

93

– Human urine LC-MS Deferoxamine metabolites, C9:1 carnitine, 
C12:1-OH carnitine, and phenylacetylglutamine 

were significantly associated with high exposure of 
busulfan.

94

Lymphoid 
malignancies

Human urine GC-MS A set of 28 metabolites in the baseline urine 
samples of the patients were predictive of individual 

MTX clearance.

95

–, without specific disease; CE, capillary electrophoresis; FIA, flow injection analysis; GC, gas chromatography; GSH, glutathione; NAD+, nicotinamide adenine 
dinucleotide; IDH, isocitrate dehydrogenase; LC, liquid chromatography; MS, mass spectrometry; mTORC1, mammalian target of rapamycin complex 1; MTX, 
methotrexate; NMR, nuclear magnetic resonance; PK, pharmacokinetics; SNPs, single nucleotide polymorphisms.

Table 1  (Continued)
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IMPDH inhibitor potently suppressed ASCL1Low cell growth in 
culture, selectively reduced growth of ASCL1Low xenografts, and 
when combined with chemotherapy it improved survival in genetic 
mouse models of ASCL1Low/MYCHigh SCLC. The data defined 
an SCLC subtype-selective vulnerability related to de novo guano-
sine nucleotide synthesis, and therefore, this key metabolic enzyme 
could be a potential therapeutic target for ASCL1Low/MYCHigh 
SCLC. This work provided a potentially new strategy for targeted 
treatment of a subpopulation of SCLC.

Using a similar strategy, Hu et al.30 performed metabolic profil-
ing of the serum samples from healthy subjects and patients infected 
with severe fever with thrombocytopenia syndrome (SFTS) virus. 
This study aimed to understand the mechanisms underlying the 
clinical features, including progressive viral replication and severe 
thrombocytopenia, and identify a potential therapeutic target for a 
disease with high mortality but no specific therapeutics. Data from 
this study revealed that the serum arginine declined with SFTS in 
two independent patient cohorts. Further analysis suggested that 
arginine metabolism, via nitric oxide synthase and arginase, is a key 
pathway in severe fever with thrombocytopenia syndrome virus– 
caused consequential death. Arginine deficiency was found to  
be associated with decreased intraplatelet nitric oxide concentra-
tion, which caused platelet activation and thrombocytopenia. It was 
also observed that granulocytic myeloid-derived suppressor cells 
that expresses arginase expanded in severe SFTS patients. This par-
tially explained the arginine depletion that further led to the down-
regulation of T-cell CD3-ζ chain and disturbance of virus clearance 
from T cells. In the following randomized controlled trial, Hu et al. 
observed that arginine supplementation was associated with accel-
erated virus clearance and thrombocytopenia recovery. Together, 
their findings revealed the arginine catabolism pathway–associated 
regulation of platelet homeostasis and T-cell dysregulation after se-
vere fever with thrombocytopenia syndrome virus infection, which 
not only provided a functional mechanism underlying SFTS patho-
genesis but also offered an alternative therapy choice for SFTS.

Yoshimi and his colleagues14 provided some evidence for mi-
tochondrial dysfunction in bipolar disorder using a metabolom-
ics approach. They found that cerebrospinal fluid isocitrate was 
significantly higher in bipolar disorder patients than in healthy 
controls, with a relatively lower IDH3A and IDH3B gene ex-
pression level. Zabala-Letona et  al.15 discovered that there were 
alterations in the polyamine pathway both in mouse model and 
human biopsies of prostate cancer using targeted and untargeted 
metabolomics. Furthermore, they revealed that mammalian target 
of rapamycin complex 1–regulated S-adenosylmethionine decar-
boxylase 1 was upstream of the metabolic reprogramming involved 
in prostate cancer. Another metabolomics study of hepatic steato-
sis in patients identified glutathione and nicotinamide adenine 
dinucleotide metabolism as potential intervention targets in non- 
alcoholic fatty liver disease.60

The emerging role of metabolomics combined with other –omics,  
such as genomics, in elucidating disease mechanisms has been rec-
ognized as well. To comprehensively understand the mechanism 
underlying the human immune responses to Zostavax vaccination, 
Li et al.61 established a multiscale, multifactorial response network 
by integrating metabolomics, transcriptomics, flow cytometry, and 

plasma cytokine data sets. They found that sterol metabolism and 
inositol phosphate metabolism were mechanistically associated 
with the immune response.

In summary, it can be clearly seen that metabolomics plays a 
pivotal role in understanding the fundamentals of diseases, which, 
in turn, could lead to the identification of novel drug targets for 
therapy.

Identification of new drug targets
Applications of metabolomics in drug discovery and precision 
medicine over the past decade have been emerging and were re-
cently reviewed by Wishart.5 Metabolomics has been used to in-
vestigate the functions of oncogenes and tumor suppressors, as 
well as metabolic enzymes, leading to the identification of novel 
drug targets. Many effective drugs being used in clinic are enzyme 
inhibitors, which can regulate the activity of metabolic enzymes 
and maintain metabolic balance.

A very good example was the development of ivosidenib (AG-
120) and enasidenib (AG-221), two-first-in-class drugs against 
IDH1 and IDH2-mutated relapsed or refractory AML, re-
spectively. Using metabolomics method, Dang et  al.62and Ward 
et al.63 revealed that mutant enzymes IDH1 and IDH2 convert α- 
ketoglutarate into 2-HG in gliomas and AML. The latter metab-
olite was referred to as an oncometabolite as its increased levels 
were associated with an increased risk of brain tumors. A later 
study confirmed that inhibitors of mutant IDH1 prevented 2-HG 
production and inhibited tumor growth,64 highlighting the value 
of the metabolomic approach for the discovery of new therapeutic 
targets. Subsequently, enasidenib, a new drug targeting the mu-
tant IDH2 enzyme, was developed and approved. It suppressed 
the mutant IDH2 enzyme and reduced the production of 2-HG 
in vitro and in vivo.65 These findings laid a solid foundation for 
the following clinical trial. After the clinical trial was completed,66 
enasidenib was approved by the FDA in the United States in 2017 
for the treatment of relapsed or refractory AML. In 2018, enasid-
enib’s sister drug ivosidenib, the inhibitor for mutant IDH1 also 
entered into clinical trial and was subsequently approved by the 
FDA67 (Figure 2). IDH1 mutations occur in 6–10% of AML pa-
tients, while IDH2 occur in 9–13%. The successful development 
of these two drugs brought new therapeutic options to the patients 
of relapsed or refractory AML.

Metabolomics has been employed in almost every stage of the 
development of mutant IDH1/2 inhibitors, including clinical 
pharmacology (Figure 3). DiNardo et al.,68 Jia et al.,69,70 and Fathi 
et al.71 have proposed oncometabolite 2-HG as a clinical diagno-
sis and prognostic biomarker in AML patients with or without 
IDH mutations. Using LC-MS and GC-MS based metabolomics, 
they found that the levels of 2-HG in serum of AML patients with 
IDH mutations were higher than those without IDH mutations. 
Furthermore, 2-HG levels were negatively correlated with the 
overall survival of IDH-mutant patients. It has also been evaluated 
as a diagnosis and prognostic biomarker of IDH-mutated glio-
mas using magnetic resonance spectroscopy.49 Sulkowski et  al.72 
revealed that 2-HG produced by mutant IDH1/2 enhanced the 
sensitivity of poly adenosine diphosphate ribose polymerase inhib-
itors on patient-derived glioma cells and tumor xenografts. They 
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demonstrated that IDH1 mutant tumor cells were more sensitive 
to poly adenosine diphosphate ribose polymerase inhibitors, which 
provided new clues to a personalized treatment strategy. Harding 
et  al.73 revealed isoform switching between mutant IDH1 and 
IDH2 as a mechanism involved in the acquired drug resistance 
to mutant IDH1/2 inhibitors by analyzing four patients. By gene 
sequencing and 2-HG production monitoring, Intlekofer et  al.74 
showed the appearance of second-site IDH2 mutations in trans or 
formation of IDH dimer-interface mutations in cis might be an-
other mechanism for the acquired drug resistance to mutant IDH 
inhibitors.

Precision medicine and pharmacometabolomics
As patients respond differently to therapies, it is important to take 
a more personalized approach to maximize drug efficacy and min-
imize drug toxicity. Prediction of therapeutic effects and adverse 
events is a crucial mandate to guide patient selection for personal-
ized treatments. Pharmacogenomics focuses on the identification 
of genome variants that influence drug response and has been 
practiced in clinical settings. However, it only reflects informa-
tion associated with genetics but does not encompass variations 
in drug-response phenotypes induced by other effects, such as the 
use of other medications, different diets and nutrition, and the gut 
microbiota. Pharmacometabolomics, however, could determine the 
metabolic phenotypes resulting from the interplay of genetics, gut 
microbiota, and environmental influences at baseline and after drug 
treatment. Therefore, it could potentially be used to better define 
mechanisms related to variations in drug response of the patients.

Metabolomics has also been used for the prediction of disease 
susceptibility in a patient population as well as drug metabolism 
and pharmacokinetics. The pharmacometabolomics approach 
identifies individual metabolomic characteristics that allow for the 
prediction of drug effectiveness and toxicity in a given individual 
patient population.12,75–79 A representative schematic chart for the 
pharmacometabolomics-enabled personalized treatment is shown 
in Figure 4.

Pharmacometabolomics has also been integrated with pharma-
cogenetics to better predict and understand an individual’s drug 
response. Kaddurah-Daouk et al. initially proposed a “pharmacom-
etabolomics-informed pharmacogenomics” strategy to investigate 
the efficacy of citalopram/escitalopram in major depressive dis-
order patients utilizing a GC-MS platform. Their results showed 
that glycine levels were negatively associated with treatment out-
come and thus may be useful as a biomarker for predicting drug 
response.76

Pharmacometabolomics for predicting the drug efficacy. 
Martin-Lorenzo et  al.80 investigated the treatment response 
of spironolactone in resistant hypertension (RH) patients. By 
combining both NMR and LC-MS–based metabolomics, they 
discovered that citrate and oxaloacetate could discriminate 
between RH and pseudo-RH, while coupled with α-ketoglutarate 
and malate, they could discriminate between responders and 
nonresponders to spironolactone treatment. This group of 
metabolite markers could be used to predict the drug response of 
spironolactone prior to the treatment and thus help to optimize 

Figure 2  Metabolomics played a critical role in the identification of 2-HG, the oncometabolite generated by mutant IDH1 and IDH2, the targets 
of the corresponding inhibitors, ivosidenib and enasidenib. 2-HG, 2-hydroxyglutarate; α-KG, α-ketoglutarate; Asp, aspartate; Glu, glutamate; 
HPLC, high-performance liquid chromatograph; IDH, isocitrate dehydrogenase; WT, IDH2 wild-type. Figures in the right dotted box were adapted 
with permission from Springer Nature, Nature (Cancer-associated IDH1 mutations produce 2-hydroxyglutarate; Lenny Dang, David W. White, 
Stefan Gross, Bryson D. Bennett, Mark A. Bittinger et al.; 2009)62 and adapted from Cancer Cell, vol. 17, Patrick S. Ward et al., The common 
feature of leukemia-associated IDH1 and IDH2 mutations is a neomorphic enzyme activity converting α-ketoglutarate to 2-hydroxyglutarate,  
p. 225–234, 2010, with permission from Elsevier.63
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the treatment of RH patients with spironolactone.
Many similar studies have used metabolomics to predict the 

outcome of drug treatment in various cancers, including acute 
lymphoblastic leukemia and prostate and breast cancer.81–83 In a 
study investigating the efficacy of nivolumab in 79 patients with 
advanced melanoma and 82 patients with metastatic renal cell car-
cinoma, the results revealed that the change in kynurenine levels in 
melanoma patients correlated well with the response to nivolumab. 
In addition, higher baseline levels of adenosine in renal cell carci-
noma patients were associated with worse progression-free survival 
and lack of response to nivolumab.84

Pharmacometabolomics has also been used to explore the mech-
anisms underlying the interindividual variation in response to as-
pirin treatment: Global decreases in serum oxylipids in response 
to aspirin intervention (14  days, 81  mg/day) were observed in 
156 healthy subjects.85 The results indicated that the non-COX1- 
mediated variability in response to aspirin could be partially  
induced by linoleic acid–derived oxylipids and may help explain 
the mechanism of action of low dose aspirin.

Pharmacometabolomics for predicting the drug toxicity. 
Metabolomics has been first applied in evaluating drug toxicity 
in preclinical models in the Consortium for Metabonomic 
Toxicology (COMET) project.86 Recently, it has been 
employed to understand mechanisms associated with drug-
induced nephrotoxicity.87,88 Martinez and his colleagues 
investigated the relationship between polymorphisms in gene 
SLCO1B1, coding for organic anion transporting polypeptide 
1B1 (OATP1B1), and the toxicity of methotrexate (MTX) in 

adult patients with hematological malignancies using targeted 
urinary metabolomics.89 According to the results of this study, 
38 and 34 altered metabolites were found between wildtype 
and carrying the variant allele, c.388A&gt;G or c.521T&gt;C, 
respectively. Moreover, half of these metabolites were related to 
MTX toxicity, and most were shown to be fatty acid derivatives 
and microbiota catabolites. These results suggest that the 
combination of pharmacometabolomics and pharmacogenomics 
would be a better choice to achieve precision medicine. To 
identify serum metabolite biomarkers that could predict the 
side effects of neoadjuvant chemoradiotherapy for esophageal 
squamous cell carcinoma (ESCC), Nishiumi et al.90 performed 
a metabolomics study of serum samples from 26 patients with 
ESCC before neoadjuvant chemoradiotherapy. The results 
showed that significantly higher serum levels of glutaric acid, 
glucuronic acid, and cystine were associated with hematological 
toxicity, while the serum level of pyruvic acid was significantly 
lower in nephrotoxicity. These metabolites, therefore, could 
be used to predict drug-induced hematological toxicity and 
nephrotoxicity after neoadjuvant chemoradiotherapy for ESCC. 
In another study, Lee et al.91 showed that urinary metabolomics 
effectively predicted long-term side effects of topical calcineurin 
inhibitors (TCI) in young children (<2  years) with primary 
atopic dermatitis. Previously, these drugs were banned for use 
in young children, based on the known carcinogenic potential 
of immunosuppressants and the results of animal studies 
where the drugs were orally administered and toxicity was 
observed only when blood levels reached 100 ng/mL. However, 
when TCIs are topically applied, blood levels remain low or 

Figure 3  The applications of metabolomics in the drug research and development (R&D) and clinical pharmacology of mutant IDH1/2 
inhibitors. 2-HG, 2-hydroxyglutarate; AML, acute myeloid leukemia; IDH, isocitrate dehydrogenase.
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undetectable. Therefore, a generalized, 6-month clinical trial 
was done to compare the effects of the TCI, pimecrolimus, 
and the corticosteroid, desonide, using urinary metabolomics. 
Although topical steroids were found to alter metabolites 
associated with cancer, TCIs did not have this effect in the 
long-term side effects prediction model. Moreover, tryptophan 
and phenylalanine metabolism were altered in the steroid-
treated group, and phenylalanine metabolism was altered in the 
pimecrolimus-treated group.

Metabolomics for predicting drug metabolism and pharmacokinetics. 
Metabolomics has also been used as a means of studying 
multicomponent herbal medicines. Jia et al.92 used this approach to 
investigate the pharmacokinetics of the Huangqi decoction (HQD, 
consisting of Radix astragali and Radix glycyrrhizae) in healthy 
Chinese.

HQD was extracted along with serum samples taken from 
subjects before and after ingestion of HQD so that comparisons 
could be made among parent drug components, absorbed parent 
components, and metabolites of HQD derived from the absorbed 
components. A panel of 115 phytochemical compounds was de-
tected in HQD, 370 metabolites in predose plasma and 1,013 me-
tabolites in post–HQD intervention plasma. The detection and 
identification of the metabolites and HQD compounds in the 
plasma provided initial information about the pharmacologically 

active substances in HQD. Ultimately, a total of 56 absorbed 
HQD compounds and 292 secondary HQD metabolites were 
identified in post–HQD plasma samples. Measurements were 
made at 4, 8, and 12  hours post-HQD ingestion to analyze the 
kinetics of the formation of secondary metabolites as well as the 
time required for absorption of parent HQD compounds. In ad-
dition, 166 metabolites measured at the three timepoints were 
identified as altered endogenous metabolites formed in response 
to HQD. Diet, gender, and fasting before drug ingestion were all 
found to influence the metabolomic results, which in turn may 
affect drug efficacy.

Drugs with narrow therapeutic windows and high pharmaco-
kinetic variability require the precise prediction of the effects of 
drug exposure to avoid potential toxicities. Metabolomic profil-
ing of predose plasma samples from 48 healthy volunteers was 
performed using a GC-MS platform to explore the individual 
differences in pharmacokinetics of atorvastatin.93 The results 
suggested that endogenous metabolites such as tryptophan, 
alanine, arachidonic acid, 2-hydroxybutyric acid, cholesterol, 
and isoleucine could serve as markers for predicting individ-
ual differences in pharmacokinetics and facilitate individual-
ized drug therapy of atorvastatin. Busulfan is a frequently used 
chemotherapeutic agent with a narrow therapeutic window 
and high pharmacokinetic variability. Kim and his colleagues 
investigated the biomarkers in the urine of pediatric patients 

Figure 4  A representative schematic chart for the pharmacometabolomics-enabled precision treatment.
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who received hematopoietic stem cell transplantation after 
busulfan administration to predict its pharmacokinetics using 
global metabolomics.94 As a result, ferritin, acylcarnitine, and 
phenylacetylglutamine were associated with the area under the 
concentration-time curve of busulfan and could be potential 
biomarkers for the prediction of busulfan exposure. The iden-
tification of metabolites associated with drug exposure could 
also serve as predictive biomarkers that would help optimize the 
therapy.

Likewise, MTX showed variable pharmacokinetics at high dose. 
A metabolomics study was performed with urine samples collected 
from a cohort of adult patients with lymphoid malignancies before 
MTX administration.95 The results showed that a set of 28 metab-
olites in the baseline urine samples of the patients were predictive 
of individual MTX clearance.

CONCLUDING REMARKS AND FUTURE PERSPECTIVE
Over the past few years, significant progress has been made in 
the development of novel technology and methodology used in 
metabolomics and their applications in clinical pharmacology. 
Metabolomics has shown tremendous potential to provide new 
insights into the disease mechanisms. In addition, it has a great 
potential to make a powerful impact on pharmaceutical and clin-
ical research. Recent advances in methodology and applications of 
the metabolomics approach in clinical pharmacology studies, as 
highlighted in this review, provide exciting new opportunities to 
enhance the treatment response and therapeutic efficacy.

Although a great deal of effort has been made in this area to 
date, we continue to face multifaceted challenges. Technically, 
when compared with other –omics, especially genomics and 
transcriptomics, that have achieved great standardization, the 
application of clinical metabolomics is hindered by its interlabo-
ratory variations among different experiments. Studies in clinical 
pharmacology involve large sample sizes, which require highly 
reproducible and reliable metabolomics analyses. Further ad-
vancements in global metabolite profiling are needed especially 
in methodological standardization enabling more consistent 
and reproducible data across various metabolomics laboratories 
and centers. Determining metabolites with improved accuracy 
and precision will allow investigators to detect subtler differ-
ences in metabolic phenotypes. In addition, the detection and 
annotation of more low-concentration metabolites to achieve a 
broader coverage of the entire metabolome is another technical 
challenge for metabolomics.

Application wise, the standardized protocols should be de-
veloped in clinical pharmacology studies, starting from sample 
collection, preparation, and processing through the data analysis 
and interpretation. Metabolomics studies of large populations 
and patient cohorts may help to achieve more unbiased clini-
cal data for better understanding of the drug response and offer 
better predictive power for outcome evaluation. In addition, 
novel bioinformatics tools that enable integrating metabolomics 
with other –omics (genomics, transcriptomics, and proteom-
ics) and predictive modeling of –omics data and drug response 
(pharmacokinetics, pharmacodynamics, and toxicity) need to be 
developed to accelerate research in clinical pharmacology and 

precision medicine. We anticipate significant advancements to 
be made in metabolomics with increased consistency and bet-
ter integration ability with other –omics data sets in the clinical 
pharmacology application.
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