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SUMMARY

The nuclear receptor peroxisome-proliferation-acti-
vated receptorgamma(PPARg), a transcriptionalmas-
ter regulator of glucose and lipid metabolism, inhibits
the growth of several common cancers, including
lungcancer. In this study,weshowthat themechanism
by which activation of PPARg inhibits proliferation of
lung cancer cells is based on metabolic changes. We
found that treatment with the PPARg agonist piog-
litazone triggers a metabolic switch that inhibits pyru-
vate oxidation and reduces glutathione levels. These
PPARg-inducedmetabolic changes result in amarked
increase of reactive oxygen species (ROS) levels that
lead to rapid hypophosphorylation of retinoblastoma
protein (RB) and cell-cycle arrest. The antiproliferative
effect of PPARg activation can be prevented by sup-
pressing pyruvate dehydrogenase kinase 4 (PDK4) or
b-oxidation of fatty acids in vitro and in vivo. Our
proposed mechanism also suggests that metabolic
changes can rapidly and directly inhibit cell-cycle pro-
gression of cancer cells by altering ROS levels.

INTRODUCTION

A hallmark of cancer is the reprogramming of glucose, lipid, and

glutamine metabolism to provide energy and substrates for

biosynthesis, which are required for proliferation and survival

of transformed cells (DeBerardinis et al., 2008; Hanahan and

Weinberg, 2011; Vander Heiden et al., 2009). A classical meta-

bolic change in cancer is the increased consumption of glucose

and inhibition of pyruvate oxidation, leading to high rates of

lactate secretion even under normoxic conditions (‘‘Warburg ef-

fect’’) (Hsu and Sabatini, 2008; Koppenol et al., 2011; Warburg,

1956). More recently, glutamine has been identified as a critical
650 Cell Metabolism 20, 650–661, October 7, 2014 ª2014 Elsevier In
nutrient for cancer cells to replenish TCA cycle metabolites for

the biosynthesis of lipids and mitochondrial ATP production

(DeBerardinis et al., 2007; Hensley et al., 2013), complementing

the altered state of glucose metabolism.

Therapeutic strategies harnessing alteredmetabolic properties

of cancer cells are currently focused on developing specific inhib-

itors against key metabolic enzymes, such as glutaminase (Le

et al., 2012; Robinson et al., 2007; Thangavelu et al., 2012) and

PKM2 (Christofk et al., 2008; Vander Heiden et al., 2010). In prin-

ciple, the activation or inhibition of transcriptional master regula-

tors of metabolic processes presents another promising strategy

to target cancer metabolism and may achieve a more selective

response. In this vein, our group recently found that PPARg is ex-

pressed at high levels in a subset of non-small cell lung cancer

cells (Jeong et al., 2012), where its activation with thiazolidine-

diones (TZDs) causes growth inhibition both in vitro and in vivo.

Also, growth-suppressing effects of PPARg and TZDs have

been shown for a variety of other cancers (reviewed in Koeffler,

2003; Peters et al., 2012). Considering the known functions of

PPARg in orchestrating glucose and lipid metabolism (Kliewer

and Willson, 1998; Willson et al., 2001), it is conceivable that

the antitumorigenic effects of PPARg may be mediated in part

through the activation of a genetic program that affects meta-

bolism of cancer cells. Therefore, understanding the molecular

basis of the effects of PPARg activation on lung cancer cells

may also provide general mechanistic insights into the impact

of metabolic changes on cancer cell growth. In the present study,

we sought to elucidate the molecular actions of PPARg in lung

cancer cells by integrating the analysis of genomic functions of

PPARg with biochemical follow-up analyses and metabolic

profiling of changes caused by PPARg activation.

RESULTS

PPARg Regulates the Expression of Genes Implicated in
Metabolism and Proliferation in Lung Cancer Cells
To characterize the genetic program regulated by PPARg, we

analyzed the cistrome of this transcription factor and the effects
c.
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Figure 1. Characterization of the PPARg

Cistrome in Lung Cancer Cell Lines

(A) Density plots of ChIP-seq reads for PPARg-

occupied regions in NCI-H2347 and NCI-H1993

cells. The x axis depicts 2 kb 50 and 30 to the pre-

dicted peak summits (0). The y axis depicts read

coverage.

(B) De novo motif analysis for PPARg-occupied

regions. Shared PPARg occupied regions of NCI-

H2347 and NCI-H1993 were analyzed with MEME.

The two most significant motifs are shown. These

motifs have the most significant similarity to the

known PPARg::RXRA or Fos/AP1 motif, respec-

tively.

(C) Known ENCODE and JASPAR transcription

factor motif enrichment in PPARg bound regions.

Enrichment scores and p values were calculated

based on the distribution of each motif in the

genome using 75,000 simulations.

(D) PPARg binding regions near the transcription

start sites of putative PPARg target genes (PDK4

and PLIN2), as depicted in the UCSC Genome

Browser. The x axis depicts genome coordinates;

the y axis depicts ChIP-seq read density (red: NCI-

H2347, blue NCI-H1993) normalized with respect

to input reads.
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of PPARg activation by TZDs on transcription on a genome-wide

scale. For the cistrome analysis, we used chromatin immuno-

precipitation followed by deep sequencing (ChIP-seq) with

NCI-H2347 and NCI-H1993 lung adenocarcinoma cells, which

express PPARg at high levels and whose growth is inhibited by

TZDs such as pioglitazone and troglitazone (Jeong et al.,

2012). We found 2,225 regions in NCI-H2347 cells and 1,419 in

NCI-H1993 cells with a significantly increased occupancy for

PPARg (Figure 1A; Table S1 available online). Of these binding

sites, 484 were shared by both cell lines. De novo motif analysis

of the PPARg binding regions identified a canonical PPARgmotif

consisting of two direct hexanucleotide repeats with a one nucle-

otide spacer (DR1) as themost significant motif (Figure 1B; Table

S2), which is similar to the motif elicited for PPARg occupied re-

gions in mouse 3T3-L1 cells (Lefterova et al., 2008; Nielsen et al.,

2008). The second most significant motif identified by MEME is

highly similar to the AP-1 (Fos) motif, which suggests that PPARg

target genes in lung adenocarcinoma cell lines may be coregu-

lated by AP-1 transcription factors. The canonical PPARg motif

was also the most highly and significantly enriched motif when

we compared the frequency of known transcription factor motifs

in PPARg-bound regions with respect to their frequency distribu-

tion in the human genome (Figure 1C; Table S3). This analysis

identified additional enrichedmotifs of other transcription factors

such as Nrf2 (NFE2L1), Forkhead, and CEBP family proteins,

which are recruited to PPARg binding regions (Lefterova et al.,

2008). These findings demonstrate the presence of bona fide,
Cell Metabolism 20, 650–66
direct binding sites of PPARg in the

genome of lung cancer cells. When we

analyzed the putative PPARg target

genes (defined as genes whose transcrip-

tion start sites are within 100 kb to PPARg

occupied loci) shared by both NCI-H2347
and NCI-H1993 cells (e.g., the established PPARg target genes

PDK4 and PLIN2) (Lefterova et al., 2008; Nielsen et al., 2008)

(Figure 1D) for enrichment in functional annotation categories,

we found biological processes that are relevant for known meta-

bolic functions of PPARg (Figure 2A). Importantly, we found a

highly significant enrichment for genes implicated in several as-

pects of lipid metabolism among the predicted PPARg targets.

We next combined the analysis of the PPARg cistrome with

the analysis of the transcriptional effects of PPARg activation

by TZDs. For that purpose, we performed a time course analysis

of gene expression, where we profiled the effects of pioglitazone

treatment on the transcriptome of NCI-H2347 cells after 12, 24,

and 48 hr of treatment (Figure 2B; Table S4). We identified 1,781

genes whose expression was either significantly upregulated or

downregulated at any of the three time points (adjusted p %

0.05; fold change R 2). We used k means clustering to group

genes into five clusters with similar expression profiles. For the

obtained clusters, we analyzed PPARg binding site enrichment

(Figure 2C). We found that genes in the ‘‘Early Up’’ cluster whose

expression is upregulated after 12 hr are most significantly en-

riched for PPARg target genes predicted by ChIP-seq and thus

likely present putative direct targets of PPARg. Genes whose

expression is upregulated after 24 or 48 hr were less significantly

enriched among genes with PPARg binding sites, and genes

whose expression was decreased showed the least enrichment

among PPARg direct targets, suggesting that these genes are

not directly regulated by PPARg. Next, we performed gene set
1, October 7, 2014 ª2014 Elsevier Inc. 651
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enrichment analysis (GSEA) (Subramanian et al., 2005) to eluci-

date the gene programs regulated by PPARg. Among the signif-

icantly enriched gene sets (Figure 2D), we found that genes

implicated in lipid metabolism such a fatty acid beta oxidation

were among the early upregulated genes (e.g., PDK4 and

PLIN2), while genes implicated in cell-cycle progression (e.g.,

UBE2C, BUB1, PRC1, CDK2, and CDK6) were enriched among

the genes whose expression is downregulated late (after 48 hr)

and which are not enriched for PPARg target genes. Further-

more, we found genes implicated in oxidative stress response

(e.g., SOD3, CAT, and MUC1) among the genes that were upre-

gulated at later time points. Collectively, these findings suggest

that PPARg activation causes the direct and early upregulation

of genes controlling lipid metabolism.

PPARg Activation Inhibits Cell Proliferation by an
Reactive-Oxygen-Species-Dependent Mechanism
We hypothesize that the increased expression of these genes

causes a change in cancer cell metabolism, which in turn causes

oxidative stress and ultimately leads to cell-cycle arrest in G1.

Hence, there was a reduction in transcript levels for genes that

are expressed in the S and G2/M phases of the cell cycle. To

test this hypothesis, we analyzed the effects of pioglitazone

treatment on cell-cycle progression and the levels of reactive ox-

ygen species (ROS) in the lung cancer cell lines. Using DNA con-

tent analysis by fluorescence-activated cell sorting (FACS), we

found that pioglitazone treatment caused G1 arrest in both

NCI-H2347 and NCI-H1993 cells (Figures 3A and 3B) but not in

NCI-H1299 and NCI-H1395 cells (Figures S1A and S1B), which

are essentially PPARg negative (Jeong et al., 2012). The pioglita-

zone-induced cell-cycle arrest coincided with a marked reduc-

tion in the levels of phosphorylated RB in the NCI-H2347 and

NCI-H1993 cells within 24 hr of treatment (Figure 3C), but not

in the PPARg-negative NCI-H1299 and NCI-H1395 cells (Fig-

ure S1C). We found that pioglitazone-induced RB hypophos-

phorylation was PPARg dependent, as PPARg knockdown

with two independent siRNAs prevented a reduction of phos-

phorylated RB by pioglitazone in NCI-H2347 cells (Figure S1D).

Also, we observed RB hypophosphorylation when we treated

NCI-H2347 and NCI-H1993 cells with an alternative TZD, trogli-

tazone (Figure S1E). Pioglitazone treatment of NCI-H2347 cells

resulted in decreased BrdU incorporation in a time-dependent

manner (Figure S1F) but did not cause apoptosis, as PARP or

Caspase-3 cleavage (Figure S1G) were not increased. Thus, pio-

glitazone treatment appears to inhibit cell proliferation in an RB-

dependent manner without inducing apoptosis. We found that

pioglitazone treatment of the PPARg-expressing breast cancer
Figure 2. Genomic Functions of PPARg in Lung Cancer Cell Lines
(A) Concept map of PPARg targets predicted by ChIP-Seq. p values for enrichmen

to construct a network of significantly enriched signatures (FDR cut-off 1%). Th

intensity correlates with the significance of enrichment between two signature se

(B) Time course analysis of gene expression for pioglitazone treatment. Heat ma

gene expression (cut-off: fold change R 2 and adjusted p value % 0.05) after 12

using Euclidean distance metric. Several genes are shown as examples for diffe

PRC1, CDK2, and CDK6).

(C) Enrichment for PPARg direct targets in different gene expression clusters. C

PPARg direct targets as predicted by ChIP-seq was calculated for each cluster

(D) GSEA for pioglitazone-regulated genes. Hierarchical clustering of normalize

represented in pioglitazone regulated genes.

Cell
cell lines HCC-1954 and HCC-1187 (but not of the PPARg-nega-

tive breast cancer cell lines T-47D and HCC-1143) also resulted

in RB hypophosphorylation (Figure S1H), which suggests that

our findings are applicable to other major cancer types.

Next, we tested if treatment of NCI-H2347 cells with H2O2

caused RB hypophosphorylation and found that low micromolar

concentrations of H2O2 (>5 mM) caused a dose-dependent

decrease in the levels of phosphorylated RB (Figure 3D). To

analyze the impact of PPARg activation on ROS levels, we

used the fluorescent ROS probe DCFDA for FACS (Figure 3E)

and found that pioglitazone markedly increased ROS levels in

PPARg-positive NCI-H2347 (Figure 3F) and NCI-H1993 cells

(Figures S2A and S2B) but not in the PPARg-negative NCI-

H1299 and NCI-H1395 cells (Figures S2C–S2F). Likewise, piogli-

tazone markedly increased ROS levels in the PPARg-positive

HCC-1954 and HCC-1187 breast cancer cells (Figures S2G–

S2J) but not in the PPARg-negative T-47D and HCC-1143 cells

(Figures S2K–S2N). The increase in ROS levels upon pioglita-

zone treatment could be rescued both by treatment with the

antioxidant N-acetylcysteine (NAC) (Figure 3G) or PPARg knock-

down by siRNAs (Figures S2O–S2R). Furthermore, we found

ROS levels increased when we treated NCI-H2347 and NCI-

H1993 cells with troglitazone (Figures S2S–S2V).

The above findings suggested that PPARg activation causes

an increase in both ROS levels and RB hypophosphorylation.

To corroborate this hypothesis, we performed two experiments.

First, we tested if antioxidant treatment could prevent RB hypo-

phosphorylation after pioglitazone treatment in PPARg-express-

ing cells. We found that NCI-H2347 cells cotreated with NAC or

with another antioxidant, vitamin C, showed no decrease in

phosphorylated RB levels upon pioglitazone treatment (Fig-

ure 3H). Likewise, NAC prevented RB hypophosphorylation by

pioglitazone in HCC-1954 and HCC-1187 breast cancer cells

(Figure S1I). Second, we tested if increased ROS levels were

required for the growth inhibition observed for TZDs in vivo

(Jeong et al., 2012). For this purpose, we tested the effects of

NAC on pioglitazone-mediated inhibition of NCI-H2347 tumor

xenograft growth. We found that NAC cotreatment significantly

mitigated the antitumorigenic effects of pioglitazone (p = 1 3

10�4) (Figure 3I).

To pinpoint the mechanistic link between increased ROS

levels and RB hypophosphorylation, we tested if active dephos-

phorylation of RB by the RB-dephosphorylating enzyme protein

phosphatase 2A (PP2A) (Alberts et al., 1993; Avni et al., 2003)

was required for the effect of pioglitazone on RB phosphoryla-

tion. We found that low nanomolar concentrations of okadaic

acid, which achieves selective and effective inhibition of PP2A,
t between gene signature sets were calculated (hypergeometric test) and used

e node size corresponds to the number of genes in a signature set; the edge

ts.

p of log2-tranformed fold changes of 1,781 genes with significantly differential

, 24, or 48 hr of pioglitazone treatment. Hierarchical clustering was performed

rentially expressed genes (PDK4, SOD3, CAT, PLIN2, MUC1, UBE2C, BUB1,

lusters defined by k means clustering and the significance of enrichment for

(hypergeometric test).

d enrichment scores for gene sets that are significantly (FDR % 0.05) over-

Metabolism 20, 650–661, October 7, 2014 ª2014 Elsevier Inc. 653
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Figure 3. PPARgActivation Inhibits Cell Pro-

liferation by a ROS-Dependent-Mechanism

(A and B) DNA content analysis of NCI-H2347 (A)

and NCI-H1993 (B) cells after 24 hr of treatment

with pioglitazone (Pio) or vehicle (DMSO) indicates

a G1 arrest upon PPARg activation.

(C) Pioglitazone treatment causes a decrease in the

levels of phosphorylated RB in both NCI-H2347

and NCI-H1993 cells within 24 hr.

(D) Hydrogen peroxide treatment causes a

decrease in the levels of phosphorylated RB in NCI-

H2347 within 24 hr.

(E–G) Pioglitazone treatment causes an increase in

ROS levels in NCI-H2347 cells. FACS with DCFDA

was performed after 12 hr treatment with vehicle

(DMSO) (E) or pioglitazone (F) or pioglitazone and

NAC (G). Note that the increase in ROS levels was

completely blocked by cotreatment with NAC.

(H) NAC and vitamin C prevent the reduction in

phosphorylated RB levels by pioglitazone in NCI-

H2347 cells after 24 hr of treatment.

(I) Tumor growth inhibition by pioglitazone in vivo is

ROS dependent. Mice xenografted with NCI-

H2347 cells were treated upon appearance of tu-

mors with pioglitazone, DMSO (vehicle), NAC, or a

combination of pioglitazone and NAC (i.p.) every

other day beginning on day 23 after cell injection.

Error bars represent SEM.
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prevented the increase in dephosphorylated RB after pioglita-

zone treatment (Figure S1J), suggesting that increased ROS

levels activate PP2A catalytic activity.

To further validate the specificity and characterize the effects

of TZDs on the growth of PPARg-expressing tumors, we gener-

ated NCI-H2347 cell lines that stably express two independent

shRNAs targeting PPARg (shPPARG-1 and shPPARG-2,

achieving �70% PPARg knockdown) (Figure 4A) and a non-tar-

geting shRNA (shNT) as negative control. We found that the

growth of NCI-H2347 tumors with stable PPARg knockdown

was not inhibited by pioglitazone treatment in vivo (Figure 4B).

We further characterized the underlying cause of pioglitazone-

mediated inhibition of tumor growth by analyses of xenograft tu-

mor cell proliferation (Ki-67 staining) and apoptosis (TUNEL

staining) (Figure 4C). We found that pioglitazone treatment

dramatically reduced the percentage of Ki-67 positive (i.e.,

proliferating cells) in the shNT (p = 0.0045) but not in the

shPPARG-1 and shPPARG-2 tumors (Figure 4D) (p > 0.05) and

had no statistically significant effect on the percentage of

apoptotic cells in either tumor (Figure 4E) (p > 0.05). Collectively,

these findings suggest that PPARg causes metabolic changes

that result in increased levels of ROS, which ultimately lead to

active RB hypophosphorylation and thus inhibition of cancer

cell proliferation.
654 Cell Metabolism 20, 650–661, October 7, 2014 ª2014 Elsevier Inc.
PDK4 and b-Oxidation Are Required
for the Effects of Pioglitazone on
ROS Levels and RB Phosphorylation
In order to identify metabolic regulators

responsible for the antitumorigenic effects

of PPARg activation, we analyzed the

functions of genes whose expression

was upregulated early by pioglitazone in
our gene expression time course analysis. Among these genes,

we found pyruvate dehydrogenase kinase 4 (PDK4) as the most

highly upregulated direct PPARg target gene. Using quantitative

RT-PCR analysis, we found a 3.1-fold increase in PDK4 tran-

script levels in NCI-H2347 cells after 3 hr of pioglitazone treat-

ment, which further increased to more than 10-fold higher levels

after 12 hr (Figure 5A). PDK4 is a regulatory kinase that phos-

phorylates and thereby inhibits pyruvate dehydrogenase. Thus,

PDK4 inhibits pyruvate oxidation and was shown to mediate

the metabolic switch from glucose oxidation to fatty acid oxida-

tion in normal tissues (Andrews et al., 1998; Holness et al., 2000;

Hue and Taegtmeyer, 2009; Strand et al., 2012). Interestingly,

upregulation of PDK4 expression was previously shown to inhibit

cell proliferation of MCF-10A mammary epithelial cells (Grassian

et al., 2011). Importantly, the same study found that PDK4

expression is markedly downregulated in many common solid

tumors, including lung and breast cancer, suggesting that

PDK4 may cause metabolic changes that inhibit tumor cell pro-

liferation. We did not observe increased expression of any of the

other three pyruvate dehydrogenase kinase genes (PDK1,PDK2,

and PDK3) upon pioglitazone treatment (Figure 5B). In order to

test the role of PDK4 in the induction of oxidative stress and

RB hypophosphorylation by TZDs, we analyzed the effects of

PDK4 knockdown by siRNAs or inhibition with the pyruvate
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Figure 4. The Antitumorigenic Effect of Pioglitazone In Vivo Is Caused by Inhibition of Cell Proliferation and Is PPARg Dependent

(A) PPARg mRNA expression in NCI-H2347 cells stably expressing shNT (negative control), shPPARG-1, or shPPARG-2. PPARg transcript levels were deter-

mined by quantitative RT-PCR using B2M as a calibrator (n = 3; error bars represent SD).

(B) Mice xenografted with NCI-H2347 shNT, shPPARG-1, and shPPARG-2 cells were treated upon appearance of tumors with DMSO (vehicle) or pioglitazone

every other day beginning on day 25 after cell injection. Error bars represent SEM. n = 10 for all treatment groups. Growth of the shNT tumors was inhibited by

pioglitazone treatment (p < 1 3 10�5), but no such effect was observed for the shPPARG-1 and shPPARG-2 tumors (p > 0.05).

(C–E) Tumors were obtained at the end of the treatment course and stained for Ki-67, TUNEL, and DNA (propidium iodide) (scale bar is 10 mm) (C). For quan-

tification of Ki-67 positivity (D) and TUNEL positivity (E), two microscopic fields containing at least 100 cells each were analyzed for each treatment group. Error

bars represent SD.
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Figure 5. PDK4 and b-Oxidation Are Required for the Effects of Pioglitazone on ROS Levels and RB Phosphorylation

(A and B) PDK4mRNA expression rapidly increases upon pioglitazone treatment (A), but expression of PDK1, PDK2, and PDK3mRNA is not increased after 24 hr

of pioglitazone treatment (B). PDK1, PDK2, PDK3, and PDK4 transcript levels in NCI-H2347 cells were determined by quantitative RT-PCR using B2M as a

calibrator for a pioglitazone treatment time course (A) or after 24 hr of treatment (B) (n = 3; error bars represent SD).

(C–G) PDK4 knockdown by siRNA prevents the decrease in phosphorylated RB (C) and the increase in ROS levels ([D]–[G]) upon pioglitazone treatment.

NCI-H2347 cells were transfected with two siRNAs targeting PDK4 or a non-targeting siRNA (siNT); after 48 hr the cells were treated with vehicle or pioglitazone

for 24 (C) or 12 hr ([D]–[G]). Then the cells were analyzed by immunoblotting (C) or stained with DCFDA and assayed by FACS ([D]–[G]).

(legend continued on next page)
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Figure 6. Tumor Growth Inhibition by Pioglitazone In Vivo Requires

PDK Activity and Fatty Acid Oxidation

(A and B) Mice xenografted with NCI-H2347 cells were treated upon appear-

ance of tumors with DMSO (vehicle), pioglitazone, DCA (A), trimetazidine (B), a

combination of pioglitazone and DCA (A), or pioglitazone and trimetazidine (B)

(i.p.) every other day beginning on day 25 after cell injection. Error bars

represent SEM. n = 10 for all treatment groups. Both DCA and trimetazidine

suppress the growth-inhibiting effects of pioglitazone (p < 1 3 10�5).

Cell Metabolism

PPARg Induces ROS to Inhibit Tumorigenesis
dehydrogenase kinase inhibitor dichloroacetate (DCA) on ROS

levels and RB phosphorylation. We found that PDK4 knockdown

(Figure S3A) reversed the effects of pioglitazone on RB phos-

phorylation (Figure 5C) and ROS levels (Figures 3D–3G) in NCI-

H2347 and HCI-H1993 cells (Figures S3B and S3E–S3H), as

did inhibition by DCA (Figures 5H–5K, S3C, and S3I–S3L).

Next, we tested whether fatty acid oxidation was required for

the increased ROS levels and RB hypophosphorylation by

TZDs. For that purpose, we used trimetazidine, an inhibitor of

acetyl-coenzyme A acyltransferase 2, which catalyzes the termi-
(H–K) Cotreatment with the PDK inhibitor DCA prevents the decrease in phosph

treatment. NCI-H2347 cells were treated with vehicle, pioglitazone, DCA, or piog

immunoblotting (H) or stained with DCFDA and assayed by FACS ([I]–[K]).

(L–O) Cotreatment with the b-oxidation inhibitor trimetazidine prevents the decre

pioglitazone treatment. NCI-H2347 cells were treated with vehicle, pioglitazone, t

the cells were analyzed by immunoblot (L) or stained with DCFDA and assayed b

Cell
nal step of the b-oxidation cycle. This compound prevented RB

hypophosphorylation by pioglitazone (Figure 5L and S3D) and

the increase of ROS levels (Figures 5M–5O and S3M–S3P) by

pioglitazone in NCI-H2347 and NCI-H1993 cells. We tested

whether pioglitazone treatment affected mitochondrial super-

oxide generation directly using the superoxide fluorescent

FACS probe MitoSOX. We observed no effect of pioglitazone

on mitochondrial super oxide generation using antimycin A and

rotenone as positive controls (Figures S3Q–S3T). We note that

inhibition of NADPH oxidase, which is one major source of

ROS by apocynin, prevented the increase in ROS levels by pio-

glitazone but also caused a slight reduction of ROS levels

without pioglitazone treatment (Figures S3U–S3X).

To test the relevance of PDK4 and fatty acid oxidation on tu-

mor growth inhibition by PPARg activation in vivo, we analyzed

the effects of DCA (Figure 6A) and trimetazidine (Figure 6B) in

NCI-H2347 xenograft experiments. We found that both com-

pounds suppressed the growth-inhibiting effects of pioglitazone,

which indicates a critical role of PDK4 and fatty acid oxidation in

the antitumorigenic effects of PPARg activation. Collectively,

these findings suggest that the upregulation of PDK4, a key regu-

lator of glucose and fatty acid utilization, is necessary for the

increase in ROS levels that ultimately leads to RB hypophos-

phorylation and tumor growth arrest.

PPARg Activation Alters Glucose and Glutamine
Metabolism in NCI-H2347 Cells to Culminate in
Suppressed Glutathione Abundance
To pinpoint the metabolic effects of PPARg activation in cancer

cells, we applied a suite of assays designed to interrogate key

nodes of metabolic activity. Consistent with the known function

of PDK4 in limiting pyruvate oxidation, examination of tissue

culture medium revealed enhanced glucose consumption and

lactate secretion in pioglitazone-treated cells (Figure 7A).

Furthermore, culture with [U-13C]glucose (Figure 7B) revealed a

suppressed production of citrate molecules (Figure 7C) and

other TCA cycle metabolites (Figure 7D) containing two

glucose-derived carbons (m+2), indicative of reduced PDH

contribution to the acetyl-CoA pool. We next tested whether

metabolism of glutamine, the predominant source of glutamate,

was altered by pioglitazone. For this purpose, we pretreated

cancer cells with pioglitazone for 6 or 12 hr prior to adding

[U-13C] glutamine to the medium and followed the time course

of labeling in the glutamate pool. Pioglitazone reduced the con-

version rate of glutamine to glutamate (Figure 7E). Since gluta-

mate is required for the synthesis of glutathione (GSH), a central

component of cellular ROS detoxification, we tested whether

pioglitazone affected the levels of GSH. We found that pioglita-

zone treatment resulted in a marked decrease of both reduced

and total GSH levels (Figure 7F, S4A, and S4B), which mirrored

the effects of glutaminase inhibition by BPTES, consistent with

an overall reduction in GSH biosynthesis, as would be predicted
orylated RB levels (H) and the increase in ROS levels (I-K) upon pioglitazone

litazone and DCA for 24 (H) or 12 hr ([I]–[K]). Then the cells were analyzed by

ase in phosphorylated RB levels (L) and the increase in ROS levels (M-O) upon

rimetazidine, or pioglitazone and trimetazidine for 24 (L) or 12 hr ([M]–[O]). Then

y FACS ([M]–[O]).
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to follow a suppression of glutamate synthesis. Furthermore, we

demonstrate that pioglitazone markedly reduced the flux from

[U-13C] glutamine in the medium to intracellular GSH within

12 hr of treatment and also mirrored the effects of glutaminase

inhibition by BPTES (Figure S4C). Also, we found that inhibition

of fatty acid oxidation with trimetazidine prevented the reduction

of glutamate synthesis from glutamine (Figure S4D). When

considered together with our other observations, these results

suggest that the metabolic changes induced by PPARg activa-

tion impair glutaminolysis, reducing levels of glutamate and

GSH. According to thismodel, the reduction in GSH levels dimin-

ishes the capacity of the cancer cells to detoxify ROS. To cor-

roborate this hypothesis, we tested if glutaminase inhibition or

glutamine withdrawal inhibition would have similar effects in

NCI-H2347 cells as pioglitazone treatment. The glutaminase in-

hibitor BPTES also suppressed both reduced and total levels of

GSH, and combining pioglitazone with BPTES enhanced these

effects (Figure 7F). Also, we found that glutamine withdrawal re-

sulted in a marked increase of ROS levels within 12 hr (Figures

7G and 7H) and led to a time-dependent decrease of phosphor-

ylated RB levels (Figure 7I). Likewise, glutaminase inhibition with

BPTES caused upregulation of ROS levels (Figures 7J–7M),

which was suppressed by NAC (Figures S4E–S4H), led to RB hy-

pophosphorylation (Figure 7N), which was prevented by cotreat-

ment with NAC (Figure S4I) and resulted in a marked inhibition of

the growth of xenograft tumors in vivo (Figure S4J). Thus, gluta-

minase inhibition phenocopies essentially all effects of pioglita-

zone treatment, which supports our mechanistic model for the

effects of PPARg activation on cancer cell metabolism and cell

proliferation.

DISCUSSION

Tumor-suppressive functions have been proposed for PPARg

and its agonists in a variety of common cancers such as breast,

colorectal, and lung cancer (Koeffler, 2003; Peters et al., 2012).

For lung cancer, activation of PPARg with TZDs was shown to

be effective in inhibiting tumor growth of PPARg-expressing hu-

man cancer cells in vitro and in vivo (Jeong et al., 2012). Impor-

tantly, combination of TZDs with platinum-based chemotherapy

in mouse models of lung adenocarcinoma (Girnun et al., 2008)

was shown to be highly effective in reducing tumor growth,
Figure 7. PPARg Activation Alters Glucose and Glutamine Metabolism

(A)Glucoseconsumptionand lactate secretion in vehicle andpioglitazone (Pio)-trea

(B) Isotope tracing diagram illustrating the supply of carbon from glucose to the TC

unlabeled carbon (12C). Abbreviations: PDH, pyruvate dehydrogenase; PDK4, py

(C and D) Mass isotopomer distribution for citrate in vehicle and pioglitazone-trea

plus additionalmass units from 13C.m+2 fraction of additionalmetabolites related

(E) Time-dependent production of [U-13C]glutamate in control and pioglitazone-t

independent culture.

(F) GSH abundance in control cells and in cells treated with pioglitazone, BPTES,

cultures. *p < 0.05; **p < 0.005.

(G and H) Glutamine depletion causes a rapid increase in ROS levels. NCI-H2347

glutamine in the medium, stained with DCFDA, and assayed by FACS.

(I) Glutamine depletion causes a decrease in phosphorylated RB levels. NCI-H234

glutamine in the medium.

(J–M) Glutaminase inhibition by BPTES causes an increase in ROS levels. NCI-H2

BPTES and pioglitazone (M), and stained with DCFDA and assayed by FACS.

(N) Glutaminase inhibition with BPTES causes a decrease in phosphorylated R

pioglitazone and BPTES for 24 hr.

Cell
and upregulation of PPARg expression (and its target genes)

has been linked to the antitumorigenic effects of Myc oncogene

ablation in a lung adenocarcinoma mouse model (Soucek et al.,

2013). In this vein, we found that high expression of PPARg in

early stage lung adenocarcinomas predicts longer overall and/

or progression-free survival in independent patient cohorts (Fig-

ures S4A–S4C). Collectively, these observations suggest an anti-

tumorigenic role for PPARg in lung adenocarcinoma.

Several mechanisms have been proposed for growth inhibition

of PPARg and TZDs (Koeffler, 2003; Peters et al., 2012), but

despite the established role of PPARg as a key regulator of

glucose and fatty acid metabolism in normal tissue, specific

changes in cancer metabolism have not been proposed previ-

ously as a key mechanism for the antitumorigenic actions of

PPARg. Our findings show that PPARg activation causes

changes to glucose, fatty acid, and glutamine metabolism that

ultimately result in ROS-mediated RB hypophosphorylation,

which can be prevented either by suppressing the PPARg target

PDK4 or by inhibiting b-oxidation. Thus, we propose a mecha-

nism by which PPARg-induced metabolic changes elicit direct

effects on cell-cycle progression. Importantly, our study demon-

strates an essential role of ROS in thismetabolic regulation of cell

proliferation and thus highlights a key role of ROS in the integra-

tion of metabolism and proliferation. Furthermore, we establish a

proof of principle that this pathway may be therapeutically tar-

geted with FDA-approved antidiabetic drugs such as pioglita-

zone and troglitazone. An altered redox state has long been

observed in cancer cells, making transformed cells vulnerable

to further increases in ROS levels and highly dependent on

ROS detoxification systems (Cairns et al., 2011; Trachootham

et al., 2009). In this context, our findings suggest that modulating

glucose, lipid, and glutamine metabolism with nuclear receptor

ligands, alone or in combinationwith existing therapies, may pro-

vide an avenue for the development of novel cancer treatment

strategies.
EXPERIMENTAL PROCEDURES

Cell Culture

NCI-H2347 and NCI-H1993 cells were cultured in RPMI with 5% fetal bovine

serum and incubated at 37�C at 5% CO2. For all experiments, cells were

seeded one day prior to treatment.
in NCI-H2347 Cells to Culminate in Suppressed GSH Abundance

tedNCI-H2347cells.Dataare theaverageandSDof three independentcultures.

A cycle. Blue circles are 13C originating from [U-13C]glucose. Open circles are

ruvate dehydrogenase kinase-4; aKG, a-ketoglutarate, OAA, oxaloacetate.

ted cells cultured with [U-13C]glucose (C). Isotopomers are shown as mass (m)

to the TCA cycle (D). Data are the average andSDof three independent cultures.

reated cells cultured with [U-13C]glutamine. Each time point is derived from an

or pioglitazone and BPTES. Data are the average and SD of three independent

cells were grown for 12 hr in the presence (Gln+) (G) or absence (Gln�) (H) of

7 cells were grown for 1, 2, 4, 6, 12, or 24 hr in the presence (+) or absence (�) of

347 cells were treated for 12 hr with vehicle (J), pioglitazone (K), BPTES (L), or

B levels. NCI-H2347 cells were treated with vehicle, pioglitazone, BPTES, or
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ChIP-Seq

We generated PPARg-LAP BAC transgenic NCI-H2347 and NCI-H1993 cell

lines using the BAC-transgenesis approach to perform ChIP as previously

described (Hua et al., 2009; Kittler et al., 2013; Poser et al., 2008). Barcoded li-

braries of ChIP and input DNAwere generatedwith the SOLiD Fragment Library

Barcoding Kit (Applied Biosystems), and 35-nt single-end reads were gener-

ated with the SOLiD4 HQ system (Applied Biosystems). PPARg-bound regions

were identified as genomic regions with a significant read enrichment and

binding peak profile in the PPARg reads over the input reads by using the

Model-based Analysis of ChIP-Seq (MACS) (Poser et al., 2008) software tool

(v.1.4.2) with 1% FDR. De novo motif discovery analysis for shared PPARg-

bound regions was performed with the Multiple EM for Motif Elicitation

(MEME) software tool (Bailey et al., 2006). We analyzed the enrichment of

known transcription factormotifs by determining the frequency of knownmotifs

in PPARg-bound regions and for 75,000 random sets of the same sample size

by using Motif Scanner (Aerts et al., 2003). We performed pathway enrichment

analysis on shared PPARG target genes in NCI-H2347 and NCI-H1993 cells.

Gene sets used for this analysiswere obtained fromMerico et al. (2010). Enrich-

ment p values were calculated using hypergeometric test, and significantly en-

riched pathways (FDR % 1%) were used to construct an enrichment map.

Quantitative PCR and Microarray Analysis

Total DNA-free RNA was prepared and used for quantitative real time PCR us-

ing SYBR� Green. Quantification was performed with the comparative CT

method (DDCT). Microarray analysis was performed with the Illumina Human

HT12v4.0 Expression Beadchip (Illumina, Inc.). Linear models for microarray

data (LIMMA) (Smyth, 2004) was used to identify genes that showed significant

expression changes between the pioglitazone treated and vehicle samples for

each time point (cut-off: adjusted p < 0.05 and log2-fold change ofR 1 and%

�1). Clustering analysis was performed as hierarchical clustering with

Euclidean distance metric and ‘‘agglomerative average’’ method, or centroid

based clustering (k means clustering). To determine the enrichment of gene

sets at the top or bottom of a ranked list of differentially regulated genes

upon pioglitazone treatment, we performed GSEA using the time course

expression data and a priori defined gene sets.

Cell-Cycle and ROS Level Analysis

DNA content analysis was performed by FACS of �10,000 propidium-iodide-

stained cells. Intracellular ROS andmitochondrial superoxide was detected by

FACS of �10,000 cells with ROS-sensitive fluorescent probes (DCFDA and

MitoSOX).

Xenograft Experiments

NCI-H2347 cells (23 106/site, two sites/animal) were injected subcutaneously

into both flank regions of Female athymic NOD SCID mice. When tumors

became visible, treatment (intraperitoneal [i.p.]) was started with various com-

pounds or DMSO (vehicle) every other day for a total of four to five injections.

Tumor volume was calculated as (width)3 (width)3 (length)/2, where length is

greater than width. All mouse experiments were in compliance with UT South-

western Institutional Animal Care and Use Committee (IACUC) policies.

Immunohistochemistry

Tumors harvested from anesthetized mice were processed for immunohisto-

chemistry by standard procedures. Mouse anti-sera and subsequent biotin/

streptavidin-fluorescein detection of bound primary was used for Ki-67 immu-

nolabeling. Terminal deoxynucleotidyltransferase-mediated UTP end label

(TUNEL) staining for apoptotic cells was done according to the protocol sup-

plied with DeadEnd Fluorometric TUNEL System (Promega). Apoptotic cells

were labeled with fluorescein, and the sections were counterstained with pro-

pidium iodide. Image acquisition was performed with a DM5500B fluorescent

microscope (Leica).

Metabolic Assays

For the analysis of glucose metabolism, NCI-H2347 cells were incubated with

DMSO or pioglitazone for 6 hr; medium was then replaced with medium con-

taining 25 mM [U-13C]glucose. After 6 hr of labeling, medium was removed for

glucose and lactate analysis as previously described (Yang et al., 2009). For

analysis by mass spectrometry, the cells were processed as previously
660 Cell Metabolism 20, 650–661, October 7, 2014 ª2014 Elsevier In
described (Cheng et al., 2011). To quantify the production of 13C-glutamate

from 13C-glutamine, cells were cultured in medium containing 2mM [U-13C]

glutamine and lysed at several time points over 60 min. GSH quantitation

was performed using ultra high performance liquid chromatography. For

measuring flux of extracellular glutamine to GSH, cells were cultured in me-

dium containing 2mM [U-13C]glutamine and lysed after 6, 12, or 24 hr. The

measurement of GSH was performed using a liquid chromatography-tandem

mass spectrometry approach.

Statistical Analysis

We tested the statistical significance between tumor volumes by calculating p

values for 10,000 permutations with the compareGrowthCurves function from

the Statistical Modeling package, statmod, available from the R Project (http://

www.r-project.org). For other experiments, statistical significance was deter-

mined by a two-tailed unpaired Student’s t test. p values < 0.05 were consid-

ered statistically significant.
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